Abstract

The aim of this work is to investigate heliocentric phasing maneuvers performed by a spacecraft propelled by an Electric Solar Wind Sail, that is, an innovative propellantless propulsion system that consists of a spinning grid of charged tethers that uses solar wind momentum to produce thrust. It is assumed that the Electric Solar Wind Sail may be controlled by varying its attitude with respect to a classical orbital reference frame, and by switching the tether grid off to obtain Keplerian arcs along its phasing trajectory. The analysis is conducted within an optimal framework, the aim of which is to find both the optimal control law and the minimum-time phasing trajectory for a given angular drift along the (assigned) working orbit. A typical phasing scenario is analyzed, by considering either a drift ahead or a drift behind maneuver on a circular, heliocentric orbit of given radius. The paper also investigates the possibility of using an Electric Solar Wind Sail-based deployer to place a constellation of satellites on the same working orbit. In that case, the optimal flight time is obtained in a compact, semianalytical form as a function of both the propulsion system performance and the number of the sail-deployed satellites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call