Abstract

The electric solar wind sail is a propulsion system that extracts the solar wind momentum for the thrust force of a spacecraft by using an interaction between solar wind protons and the electric potential structure around charged long thin conducting tethers. The system enables a spacecraft to generate a thrust force without consuming reaction mass. This paper investigates the capability of the electric solar wind sail as a propulsion system for deep space exploration missions. The shape of the conducting tether that is determined by the equilibrium of the solar wind force and centrifugal force is numerically calculated for formulating an advanced solar wind force model. The conducting tethers deviate from the ideal sail spin plane, and the maximum value of the thrust direction varies from 13∘ to 19∘. To estimate the spacecraft thrust vector, which is calculated as the sum of solar wind force vectors exerted on each tether, best-fit polynomial equations are proposed. We performed numerical simulations for a two-dimensional orbital transfer mission to investigate the capability of the electric solar wind sail. Results of numerical simulations show that the electric solar wind sail enables spacecraft to perform Earth–Venus, Earth–Mars, and Earth–Itokawa transfer missions. Additionally, this paper performs three-dimensional simulations for an Earth–Ryugu transfer mission. The electric solar wind sail achieves a more complicated orbital transfer in a reasonable mission time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call