Abstract
We previously identified two isoforms of T-type, voltage-gated calcium (Cav3) channels (Cav3.1, Cav3.2) that are functionally expressed in murine lymphatic muscle cells; however, contractile tests of lymphatic vessels from single and double Cav3 knock-out (DKO) mice, exhibited nearly identical parameters of spontaneous twitch contractions as wild-type (WT) vessels, suggesting that Cav3 channels play no significant role. Here, we considered the possibility that the contribution of Cav3 channels might be too subtle to detect in standard contraction analyses. We compared the sensitivity of lymphatic vessels from WT and Cav3 DKO mice to the L-type calcium channel (Cav1.2) inhibitor nifedipine and found that the latter vessels were significantly more sensitive to inhibition, suggesting that the contribution of Cav3 channels might normally be masked by Cav1.2 channel activity. We hypothesized that shifting the resting membrane potential (Vm) of lymphatic muscle to a more negative voltage might enhance the contribution of Cav3 channels. Because even slight hyperpolarization is known to completely silence spontaneous contractions, we devised a method to evoke nerve-independent, twitch contractions from mouse lymphatic vessels using single, short pulses of electric field stimulation (EFS). TTX was present throughout to block the potential contributions of voltage-gated Na+ channels in perivascular nerves and lymphatic muscle. In WT vessels, EFS evoked single contractions that were comparable in amplitude and degree of entrainment to those occurring spontaneously. When Cav1.2 channels were blocked or deleted, only small residual EFS-evoked contractions (~ 5% of normal amplitude) were present. These residual, EFS-evoked contractions were enhanced (to 10–15%) by the KATP channel activator pinacidil (PIN) but were absent in Cav3 DKO vessels. Our results point to a subtle contribution of Cav3 channels to lymphatic contractions that can be unmasked in the absence of Cav1.2 channel activity and when the resting Vm is more hyperpolarized than normal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.