Abstract

A theoretical study of energy level shift and field-induced tunneling in symmetric and asymmetric coupled quantum wells is presented. Energy level shift is calculated from the time-dependent Schrodinger equation using the inverse power method. The time evolution of an electron wavepackage is shown by the application of the time-development operator of the time-independent Schrodinger equation. Energy level shift in coupled quantum wells is found to be enhanced in comparison to single quantum wells. The energy level shift in coupled quantum wells is found to be nearly linear with the applied field. Oscillation frequencies for electrons in symmetric and asymmetric coupled quantum wells are evaluated versus the applied field and compared to semiclassical prediction. Tunneling lifetimes in symmetric and asymmetric coupled quantum wells are evaluated versus the applied field. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.