Abstract

First principles calculations were performed to investigate the elastic, electronic and thermal properties of 14% cubic yttria-stabilized zirconia (YSZ) using the pseudo potential plane-wave method within the gradient generalized approximation (GGA) for the exchange and correlation potential. Computed lattice constant parameters are in good agreement with the available experimental results. The three independent elastic constants were computed by means of the stress–strain method, indicating that 14% cubic YSZ is a mechanically stable structure. From the knowledge of the elastic constants, a set of related properties, namely bulk, shear modulus, Young’s modulus, sound velocity, Debye temperature, thermal capacity and minimum thermal conductivity are numerically estimated in the frame work of the Voigt–Reuss–Hill approximation for YSZ polycrystalline. The calculated bulk modulus, shear modulus, Young’s modulus, sound velocity, Debye temperature, thermal capacity and minimum thermal conductivity are in reasonable agreement with the available experimental and theory data. Density of states, charge density and Mulliken population analysis show that the 14% cubic YSZ is covalent and possess ionic character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.