Abstract
In this paper, the nitrogen doped (N-HPC), nitrogen and phosphorus co-doped hierarchical porous carbon (NP-HPC) are prepared by cross-linking phytic acid and poly pyrrole/aniline precursor, respectively. They are mixed with MgH2 by high-energy ball milling, and then their effects and mechanisms on the hydrogen absorption and desorption properties of MgH2 are investigated. Meanwhile, the hydrogen storage properties of MgH2 added with graphite (G) are also compared. The results show that the additions of NP-HPC, N-HPC, and G all exhibit the catalytic effect on the hydrogen absorption and desorption of MgH2. As for the hydrogen desorption, the catalytic effect is enhanced in the order of N-HPC, G and NP-HPC. Compared with pure MgH2, the hydrogen desorption temperature is reduced by 65.3 °C, 79.6 °C and 91.1 °C, respectively. Among them, the MgH2 + NP-HPC system can release 5.17 wt% hydrogen at 300 °C within 30 min. First-principles calculations reveal that the P-doped and vacancy-containing carbon materials significantly reduce the H2 recombination barrier from the surface of MgH2 and distort the atomic structure of near-surface layer of MgH2, which in turn weakens the Mg-H bond strength. This may be the intrinsic reason for the excellent catalytic effect of NP-HPC and vacancy-containing G on the hydrogen desorption performance of MgH2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.