Abstract

Leakage current is of great concern for designs in nanometer technologies. In 90- and 65-nm technologies, subthreshold leakage current dominates total leakage current. For a typical ASIC circuit running at several hundred megahertz frequencies, the subthreshold leakage power can be as high as 60% of total power. An important method for minimizing power in ASIC libraries is reducing leakage current. In this article, a complete automated leakage optimization flow that changes channel lengths and widths with cell delay and active area constraints was discussed. Optimization results show that there is ~30% leakage current reduction with a few percent active area and delay increase. There is increase in dynamic power, but the net total power reduction is significant. A uniform increase of 10% in gate length results in ~35% leakage reduction at the cost of ~12% delay degradation. The total cell area changes are minimal in both cases. The optimization flow begins with SPICE net lists from an existing library, optimizes leakage currents subject to performance metrics and active area increase constraints, and finishes with new layout generation and characterization. Investigations indicate that the leakage optimization has little impact on cell noise margin and layout parasitic modifications do not affect optimization results. The efficient automatic layout-to-layout cell leakage optimization flow is most suitable for leakage minimization and library migration for 90- and 65-nm ASIC libraries. Future work includes applying the flow to situations where layout-dependent DFM and process variation objective functions are also optimized

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.