Abstract
Modern electrical grids are evolving towards distributed architectures, necessitating efficient and reliable state synchronization mechanisms to maintain structural and functional consistency. This paper investigates the application of conflict-free replicated data types (CRDTs) for representing and synchronizing the states of distributed electrical grid systems (DEGSs). We present a general structure for DEGSs based on CRDTs, focusing on the Convergent Replicated Data Type (CvRDT) model with delta state propagation to optimize the communication overhead. The Observed Remove Set (ORSet) and Last-Writer-Wins Register (LWW-Register) are utilized to handle concurrent updates and ensure that only the most recent state changes are retained. An actor-based framework, “Vigilant Hawk”, leveraging the Akka toolkit, was developed to simulate the asynchronous and concurrent nature of DEGSs. Each electrical grid node is modelled as an independent actor with isolated state management, facilitating scalability and fault tolerance. Through a series of experiments involving 100 nodes under varying latency degradation coefficients (LDK), we examined the impact of network conditions on the state synchronization efficiency. The simulation results demonstrate that CRDTs effectively maintain consistency and deterministic behavior in DEGSs, even with increased network latency and node disturbances. An effective LDK range was identified (LDK effective = 2 or 4), where the network remains stable without significant delays in state propagation. The linear relationship between the full state distribution time (FSDT) and LDK indicates that the system can scale horizontally without introducing complex communication overhead. The findings affirm that using CRDTs for state synchronization enhances the resilience and operational efficiency of distributed electrical grids. The deterministic and conflict-free properties of CRDTs eliminate the need for complex concurrency control mechanisms, making them suitable for real-time monitoring and control applications. Future work will focus on addressing identified limitations, such as optimizing message routing based on the network topology and incorporating security measures to protect state information in critical infrastructure systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have