Abstract

The Local Iterative Monte Carlo technique (LIMO) is used for an effective simulation of hot electron distributions in silicon MOSFETs. This new Monte Carlo approach yields an efficient use of the computational resources due to a different iteration scheme. In addition the necessary computation time can be further reduced by a reuse of the computational expensive MC step simulation results in the iteration process. The later possibility is investigated in detail in this work. Results for short channel MOSFETs demonstrates that correct two-dimensional hot electron distributions can be calculated by LIMO within 1 hour on a standard work station.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.