Abstract
A simple and efficient optimisation procedure based on real coded genetic algorithm is proposed for the solution of short-term hydrothermal scheduling problem with continuous and non-smooth/non-convex cost function. The constraints like load-generation balance, unit generation limits, reservoir flow balance, reservoir physical limitations and reservoir coupling are also considered. The effectiveness of the proposed algorithm is demonstrated on a multichain-cascaded hydrothermal system that uses non-linear hydro generation function, includes water travel times between the linked reservoirs, and considers the valve point loading effect in thermal units. The proposed algorithm is equipped with an effective constraint-handling technique, which eliminates the need for penalty parameters. A simple strategy based on allowing infeasible solutions to remain in the population is used to maintain diversity. The same problem is also solved using binary coded genetic algorithm. The features of both algorithms are same except the crossover and mutation operators. In real coded genetic algorithm, simulated binary crossover and polynomial mutation are used against the single point crossover and bit-flipping mutation in binary coded genetic algorithm. The comparison of the two genetic algorithms reveals that real coded genetic algorithm is more efficient in terms of thermal cost minimisation for a short-term hydrothermal scheduling problem with continuous search space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power and Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.