Abstract
Graphs are widely used to model complicated data semantics in many applications in bioinformatics, chemistry, social networks, pattern recognition, etc. A recent trend is to tolerate noise arising from various sources such as erroneous data entries and find similarity matches. In this paper, we study graph similarity queries with edit distance constraints. Inspired by the $$q$$ -gram idea for string similarity problems, our solution extracts paths from graphs as features for indexing. We establish a lower bound of common features to generate candidates. Efficient algorithms are proposed to handle three types of graph similarity queries by exploiting both matching and mismatching features as well as degree information to improve the filtering and verification on candidates. We demonstrate the proposed algorithms significantly outperform existing approaches with extensive experiments on real and synthetic datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.