Abstract

Graphs are widely used to model complicated data semantics in many applications in bioinformatics, chemistry, social networks, pattern recognition, etc. A recent trend is to tolerate noise arising from various sources, such as erroneous data entry, and find similarity matches. In this paper, we study the graph similarity join problem that returns pairs of graphs such that their edit distances are no larger than a threshold. Inspired by the q-gram idea for string similarity problem, our solution extracts paths from graphs as features for indexing. We establish a lower bound of common features to generate candidates. An efficient algorithm is proposed to exploit both matching and mismatching features to improve the filtering and verification on candidates. We demonstrate the proposed algorithm significantly outperforms existing approaches with extensive experiments on publicly available datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.