Abstract
Graphs are widely used to model complex data in many applications, such as bioinformatics, chemistry, social networks, pattern recognition, etc. A fundamental and critical query primitive is to efficiently search similar structures in a large collection of graphs. This paper studies the graph similarity queries with edit distance constraints. Existing solutions to the problem utilize fixed-size overlapping substructures to generate candidates, and thus become susceptible to large vertex degrees or large distance thresholds. In this paper, we present a partition-based approach to tackle the problem. By dividing data graphs into variable-size non-overlapping partitions, the edit distance constraint is converted to a graph containment constraint for candidate generation. We develop efficient query processing algorithms based on the new paradigm. A candidate pruning technique and an improved graph edit distance algorithm are also developed to further boost the performance. In addition, a cost-aware graph partitioning technique is devised to optimize the index. Extensive experiments demonstrate our approach significantly outperforms existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.