Abstract

In recent years, the academic community has shown significant interest in per- or polyfluoroalkyl compounds (PFAS) due to their challenging degradation and potential health risks. Photocatalysis has been investigated for PFAS decomposition due to its environmentally friendly nature. In this study, BiOI with abundant iodine vacancies was synthesized through solvothermal and calcination methods (referred to as BiOI1-x), and was used for PFAS degradation with a low power UV light source. Compared to pure BiOI, BIOI1-x showed higher photocatalytic activity towards PFOA (perfluorooctanoic acid). Within 5 h under 5 W LED light irradiation, the degradation rate of PFOA reached 51.9 % with BiOI1-x calcined at 440 °C (No significant degradation of PFAS was observed with pure BiOI). Capture experiments, electron paramagnetic resonance spectroscopy, and electrochemical experiments revealed that the main active species in the system were photogenerated holes, followed by hydroxyl radicals. Furthermore, the presence of iodine vacancies significantly improved the efficiency of charge carrier separation and enhanced the photocatalytic performance. Finally, a hypothetical degradation pathway for PFOA in this system was suggested. This study achieved efficient degradation of PFAS under low power LED light (5 W), emphasizing its significant practical importance in terms of energy conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.