Abstract

In problems of portfolio selection the reward-risk ratio criterion is optimized to search for a risky portfolio offering the maximum increase of the mean return, compared to the risk-free investment opportunities. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several polyhedral risk measures, being linear programming (LP) computable in the case of discrete random variables represented by their realizations under specified scenarios, have been introduced and applied in portfolio optimization. The reward-risk ratio optimization with polyhedral risk measures can be transformed into LP formulations. The LP models typically contain the number of constraints proportional to the number of scenarios while the number of variables (matrix columns) proportional to the total of the number of scenarios and the number of instruments. Real-life financial decisions are usually based on more advanced simulation models employed for scenario generation where one may get several thousands scenarios. This may lead to the LP models with huge number of variables and constraints thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by alternative models based on the inverse ratio minimization and taking advantages of the LP duality. In the introduced models the number of structural constraints (matrix rows) is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.