Abstract
The portfolio optimisation problem is modelled as a mean-risk bicriteria optimisation problem where the expected return is maximised and some (scalar) risk measure is minimised. In the original Markowitz model the risk is measured by the variance while several polyhedral risk measures have been introduced leading to Linear Programming (LP) computable portfolio optimisation models in the case of discrete random variables represented by their realisations under specified scenarios. Recently, the second order quantile risk measures have been introduced and become popular in finance and banking. The simplest such measure, now commonly called the Conditional Value at Risk (CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level. The corresponding portfolio optimisation models can be solved with general purpose LP solvers. However, in the case of more advanced simulation models employed for scenario generation one may get several thousands of scenarios. This may lead to the LP model with a huge number of variables and constraints, thus decreasing the computational efficiency of the model. We show that the computational efficiency can be then dramatically improved with an alternative model taking advantages of the LP duality. Moreover, similar reformulation can be applied to more complex quantile risk measures like Gini’s mean difference as well as to the mean absolute deviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.