Abstract
In the original Markowitz model for portfolio optimization the risk is measured by the variance. Several polyhedral risk measures have been introduced leading to Linear Programming (LP) computable portfolio optimization models in the case of discrete random variables represented by their realizations under specified scenarios. The LP models typically contain the number of constraints (matrix rows) proportional to the number of scenarios while the number of variables (matrix columns) proportional to the total of the number of scenarios and the number of instruments. They can effectively be solved with general purpose LP solvers provided that the number of scenarios is limited. However, real-life financial decisions are usually based on more advanced simulation models employed for scenario generation where one may get several thousands scenarios. This may lead to the LP models with huge number of variables and constraints thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by alternative models taking advantages of the LP duality. In the introduced models the number of structural constraints (matrix rows) is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.