Abstract

TiO2 Nanoparticle/Trimethoxy(propyl)silane (TMPSi) ceramic composite coating was deposited on 316L steel using a one-step electrophoretic deposition (EPD) method. Silane coupling agent (TMPSi) was added to the EPD bath in different concentrations (from 0.5 to 15 vol %) to decrease the surface energy of the deposited coating. TiO2 coating is hydrophilic whereas by adding varying concentrations of TMPSi, the obtained nanocomposite coating showed much better hydrophobicity. Surface wettability was measured by water contact angle (WCA) and sliding angle (SA) tests. Moreover, the effect of TMPSi concentration was determined by comparing the WCA and SA values. Surface morphology was studied through Field Emission Scanning Electron Microscopy (FESEM), and the presence of micro/nano meter roughness on the surface was confirmed. The distribution of elements were investigated by EDS analysis in which their uniform dispersion was observed. Corrosion behavior of 316L samples before and after the coating process was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests in 3.5 wt % NaCl solution. The polarization curve proved that the superhydrophobic ceramic nanocomposite coatings (WCA = 168° and SA = 3.1°) were able to decrease the corrosion rate of bare 316L (from 12.180 to 5.621 (μm per year)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.