Abstract
Developing heterogeneous catalysts with exceptional catalytic activity over formic acid (HCOOH, FA) dehydrogenation is imperative to employ FA as an effective hydrogen (H2) carrier. In this work, ultrasmall (1.4 nm) and well-dispersed PdIr nanoparticles (NPs) immobilized on amine-functionalized yolk-shell mesoporous silica nanospheres (YSMSNs) with radially oriented mesoporous channels have been synthesized by a co-reduction strategy. The optimized catalyst Pd4Ir1/YSMSNs-NH2 (Pd/Ir molar ratio = 4:1) exhibited a remarkable turnover frequency (TOF) of 5818 h−1 and remarkable stability at 50 °C with the addition of sodium formate (SF), resulting in complete FA conversion and H2 selectivity, exceeding most of the solid heterogeneous catalysts in previous reports under similar circumstances. Kinetic isotope effect (KIE) exploration indicates the cleavage of the CH bond is regarded as the rate-determining step (RDS) during the FA dehydrogenation process. Such excellent catalytic properties arise from the ultrafine and well-dispersed PdIr NPs supported on the nanosphere support YSMSNs-NH2, the electronic synergistic effect of PdIr alloy NPs, and the strong metal-support interaction (MSI) effect between the introduced PdIr NPs and YSMSNs-NH2 support. This work offers a new paradigm for exploiting the highly effective silica-supported Pd-based heterogeneous catalysts over the dehydrogenation of FA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have