Abstract
Formic acid (FA) is a prospective hydrogen storage agent, which has attracted much attention for its low toxicity and stability and plays a significant role in the comprehensive implementation of the hydrogen economy. In this regard, it is very important to utilize additive free FA dehydrogenation, for which few heterogeneous catalysts are available. Herein, we report ultra-small PdAuIr nanoparticles (NPs) supported on amine-based amorphous porous organic polymers (POPs), which exhibit excellent FA dehydrogenation activity with an initial total turnover number (TOF) of 9635 h−1 without additives at room temperature and apparent activation energy (Eaapp) of 36.5 kJ/mol. The results show that the excellent performance can be attributed to the synergistic effect of trimetallic alloys and strong metal-support interaction effect (SMSI), as well as to the amine groups (-NH2) grafted on POPs which facilitates the O–H bond splitting on FA. Overall, the simple and efficient synthetic strategy provides a new method for the selective dehydrogenation of FA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have