Abstract

To achieve efficient electron injection in organic light-emitting diodes, we examine ultra thin layers (0.50 nm) of the low-work-function metals, Cs (1.9eV), Rb (2.2eV), K (2.3eV), Na (2.4eV), Li (2.9eV), and Ca (2.9eV) capped with aluminum (Al) as a cathode layer. While all the alkali metals show a decrease of driving voltage compared with a single Al cathode, the Cs layer especially shows a significant decrease, and we obtain a high current density of 1.9 A/cm2 at an applied voltage of only 10V by using this layer. We demonstrate that efficient electron injection is achieved when we use a Cs layer with a thickness of less than 3 nm, although electron injection efficiency abruptly decreases when using a Cs layer thicker than 3 nm. From the Cs thickness dependence of current-voltage characteristics, we conclude that Cs atoms form an alloy layer with aluminum atoms at the organic/Al cathode interface, organic layer/Cs:Al/Al, that significantly enhances electron injection compared with that obtained from bulk Cs layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.