Abstract

Highly enhanced electron injection is demonstrated with a thin manganese dioxide (MnO2) electron injection layer (EIL) in Alq3-based organic light-emitting diodes. Insertion of the MnO2 EIL between the Al cathode and Alq3 results in highly improved device characteristics. In situ photoelectron spectroscopy shows remarkable reduction of the electron injection barrier without significant chemical reactions between Alq3 and MnO2, which could induce Alq3 destruction. The reduction of the electron injection barrier is due to the n-type doping effect, and the lack of strong interfacial reaction is advantageous with regards to more efficient electron injection than a conventional LiF EIL. These properties render the MnO2, a potential EIL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.