Abstract
In this study, the acid-base bifunctional magnetic ZrMg@Fe3O4 metallic oxide catalysts with remarkable structural properties were synthesized by the co-precipitation method for the catalytic transfer hydrogenation (CTH) of furfural (FF), ethyl levulinate (EL), and 5-methylfurfural (5-MF) to furfuryl alcohol (FFA), gamma-valerolactone (GVL), and 5-methyl-2-furanmethanol (5-MFA). Characterization results indicated that the ZrMg@Fe3O4 (7: 1:1) catalyst possesses a substantial pore volume, large specific surface area, and mesoporous properties, which play an important role in improving catalytic activity. The leaching experiment indicated that the catalyst was not prone to leaching, proving its structural stability. The yield of FFA, GVL, and 5-MFA could be as high as 92.50%, 95.00%, and 53.95% by optimization experiments. The Py-FTIR, CO2-TPD, and poisoning experiments showed that Lewis acid-base sites significantly impact the catalytic activity. The catalyst can be readily isolated and retrieved from the liquid reaction mixture by applying the external magnetic field. The reaction mechanism and catalytic stability were also conducted by systematically studying the reaction experiments and physicochemical properties of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.