Abstract
The development of dislocation density and micro-strain in heteroepitaxial diamond films on iridium was measured over more than two decades of thickness up to d ≈ 1 mm. Simple mathematical scaling laws were derived for the decrease of dislocation density with increasing film thickness and for its correlation with micro-strain. The Raman line width as a measure of micro-strain showed a huge decrease to 1.86 cm−1, close to the value of perfect single crystals. The charge collection properties of particle detectors built from this material yield efficiencies higher than 90% in the hole-drift mode, approaching the performance of homoepitaxial films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.