Abstract

The thermal diffusivity of heteroepitaxial CVD diamond films grown on iridium buffer layers has been measured using a combined laser flash and converging thermal wave setup. Absolute values and anisotropy for a fiber-textured reference sample were in the range of former reports in the literature. The in-plane thermal conductivity for three heteroepitaxial samples grown on Ir/YSZ/Si(001) as deduced from the diffusivity measurements was around 20 W/cm K, similar to high purity large grain polycrystalline films. Laser flash measurements of the perpendicular diffusivity suggest that the defect rich first microns of the heteroepitaxial films represent a thermal series resistance which limits the perpendicular heat transport especially for thin films. For the parallel component of the diffusivity the contribution of this shunt resistance is negligible. The absolute values for the parallel component in the heteroepitaxial films with in-plane angular spread of the crystal lattice below 0.5° were discussed in the framework of the model proposed by Klemens for phonon scattering by grain boundaries. The present data indicate that the remaining defects in heteroepitaxial diamond films with low mosaic spread are significantly less detrimental for the heat transport than large angle grain boundaries. In addition we speculate that the exclusive deposition on the {100} growth sector may also reduce the influence of nitrogen in the gas phase on the heat transport properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call