Abstract
Due to the substantial increase in the number of electrically driven systems onboard more electric aircraft (MEA), the onboard electric power systems (EPSs) are becoming more and more complex. Therefore, there is a need to develop a control strategy to manage the overall EPS energy flow and ensure the operation of safety-critical systems (which are electrical loads) under different operating scenarios and to consider EPS losses minimization, exploiting the thermal capability of generators, different load priorities, and available batteries with their charging and discharging schedules. This article presents an energy management (EM) strategy that considers the aforementioned objectives. The optimal droop gain approach is employed as a power-sharing method to minimize the total EPS losses in MEA. A finite state machine (FSM) has been used to implement the control strategy to realize the EPS reconfiguration operation. The proposed EM strategy is implemented and simulated using MATLAB/Simulink and hardware-in-the-loop (HIL) under different operational scenarios, such as normal operations, failure of one of the power generation channels, and failure of all power generation channels. The proposed EM method has shown its capability to efficiently manage the EPS under different operating conditions to reduce the overall system losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.