Abstract

Pb-free solder joints undergo microstructural and mechanical evolution due to alloy coarsening and growing intermetallic compounds which degrade the joint electrical performance. Electronics assemblies containing solder joints are frequently exposed to elevated temperatures for prolonged periods of time. The purpose of the study is to discover the effect of isothermal aging on the reliability of Sn-Ag-Cu (SAC) assemblies. After studied different surface finishes, we employed Immersion Ag (ImAg), Immersion Sn (ImSn), Electroless Ni/Immersion Au (ENIG) and Electroless Ni/Electroless Pd/Immersion Au (ENEPIG) which have potential for higher reliability and better performance and received increased attention for both packaging and subtracted applications. A full experiment matrix with varying aging temperatures and solder alloys was considered. Package sizes ranged from 19mm, 0.8mm pitch ball grid arrays (BGAs) to 5mm, 0.4mm pitch μBGAs and in additional, 0.65mm MLF and 2512 resistors be particularly tested. Storage condition are temperatures leveling up from 25°C, 55°C, 85°C, 100°C and 125 °C with aging over time periods of 0, 21 days, 6 months, 12 months and 24 months. Afterwards, the specimens all subjected to accelerated thermally cycled from −40°C to 125°C with 15 min dwell times at the high and low peak temperature. The paper presents the experimental data to justify the investigation of the degradation on the characteristic lifetime of SAC alloy on ImAg and ImSn surface finish in elevated temperature environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call