Abstract
Three different types of underfill imperfections were considered; i.e., (1) interfacial delamination between the underfill encapsulant and the solder mask on the PCB (crack initiated at the tip of underfill fillet), (2) interfacial delamination between the chip and the underfill encapsulant (crack initiated at the chip corner), and (3) the same as (2) but without the underfill fillet. Five different combinations of coefficient of thermal expansion (CTE) and Young's modulus with the aforementioned delaminations were investigated. A fracture mechanics approach was employed for computational analysis. The strain energy release rate at the crack tip and the maximum accumulated equivalent plastic strain in the solder bumps of all cases were evaluated as indices of reliability. Besides, mechanical shear tests were performed to characterize the shear strength at the underfill-solder mask interface and the underfill-chip passivation interface. The main objective of the present study is to achieve a better understanding in the thermo-mechanical behavior of flip chip on board (FCOB) assemblies with imperfect underfill encapsulants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have