Abstract

The usage of composite materials has been growing widely over the years due to their excellent characteristics such as lightweight, high-energy absorption capability and corrosion resistance. In this study, the crashworthiness characteristics of square woven jute/epoxy composite tubes with different configuration of triggering mechanisms were tested and evaluated when subjected to quasi-static axial loading. The deformation morphology of each composite tube was captured by using high-resolution photography. The composite tubes were fabricated by using the combination of hand layup and compression bladder moulding techniques in which total of three layers of woven bi-directional natural jute fabric (plain weave mat) were used, each with wall thickness and length of 3 mm and 100 mm, respectively. To induce the progressive crushing of composite tubes, four different types of triggering mechanisms were used: the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. The influence of energy absorption, crush force efficiency, peak load, mean load and load–displacement history was examined and discussed. From this study, most of the composite tubes failed in progressive manner rather than catastrophic failure. Overall, the tulip trigger configuration is considered the optimal design for crashworthy structure applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call