Abstract

Composite tubes are widely adopted in engineering protections owning to desirable passive energy absorption. With the aim of enhancing energy absorption and making full use of structural materials, a novel tube inspired by the structure of cattle horn has been designed. It consisted of a shell composed of nested tubes and a core composed of evenly distributed tubes, which are connected by beams. The energy absorption properties of bionic tube, six-cell tube, four-cell tube and circular tube were compared by numerical models verified by axial compression. The factors affecting mechanical responses and energy absorption capacities of bionic tube were analysed. Compared to the six-cell tube, the bionic tube exhibited a 104.91% increase in peak load, a 239.51% increase in mean load and an 83.39% increase in specific energy absorption. Under the premise of ensuring the energy absorption, mean load and crushing force efficiency, the mass and peak load can be controlled by limiting the wall thickness and height of core. The proposed bionic tube had the potential to be applied in the automobile and aerospace industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.