Abstract

Existing constitutive models rarely considered the effect of transition point from the strain-softening phase to the strain-hardening phase. In this paper, a new phenomenological model is proposed. The model introduces a transition optimization factor to take the effect of the transition point into consideration. The tensile and compressive deformations under different loading conditions are analyzed separately and compared with the results of the DSGZ (Duan-Saigal-Greif-Zimmerman) model. The results indicate that the proposed model is more accurate than the DSGZ model in analyzing the post-yield deformation that possesses a significant transition section. Based on the new stress-strain updating algorithm, a VUMAT subroutine was written for cyclic compression simulations. Comparing with the simulation data of DSGZ model, the proposed model effectively describes the hysteresis loop in the cyclic process. This indicates that the proposed model is more capable of analyzing complex deformations of thermoplastic polymers. Meanwhile, compared with the primal algorithm, the new stress-strain updating algorithm improves the analytical accuracy of the proposed model for the unloading and reloading phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.