Abstract
The interfacial tension (IFT) is an important factor for the hydrocarbon flow in a porous reservoir. Methane, one main accompanied gas of hydrocarbon, has a crucial influence on the IFT. However, the methane effect is still unclear. In this work, the effects of the methane content, temperature, and pressure on the water–oil interface were investigated, employing molecular dynamics simulations. The interfacial density profiles were given and indicated that the methane molecules accumulate at the interface, leading to a decreasing IFT. As the methane mole fraction increases, the interfacial roughness and interfacial thickness increase and the induced deeper molecular penetrations and stronger miscibility initiate a decrease of the IFT. Further, an enhancing fluid diffusivity at the interface is observed, which accounts for the strengthening interfacial mobility. On the other hand, our calculations indicate that the IFT decreases with the rising temperature while increases with the strengthening pressure. Our study provides an in-depth understanding of the interfacial behavior in the ternary phase system and has some promise for the exploitation of shale oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.