Abstract

Apixaban is an oral anticoagulant that directly inhibits the target Factor Xa (FXa). In this study, we focused on the in vivo and in vitro effects of adagrasib and asciminib on apixaban metabolism, to discover potential drug-drug interactions (DDI) and explore their inhibitory mechanisms. The levels of apixaban and its metabolite, O-desmethyl-apixaban (M2), were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). In vitro evaluation, the maximum half inhibitory concentration (IC50) of adagrasib in rat liver microsomes (RLM) and human liver microsomes (HLM) against apixaban was 7.99 μM and 117.40 μM, respectively. The IC50 value of asciminib against apixaban in RLM and HLM was 4.28 μM and 18.42 μM, respectively. The results of the the analysis on inhibition mechanisms showed that adagrasib inhibited the metabolism of apixaban through a non-competitive mechanism, while asciminib inhibited the metabolism of apixaban through a mixed mechanism. Moreover, the interaction of apixaban with adagrasib and asciminib in Sprague-Dawley (SD) rats was also investigated. It was found that the pharmacokinetic characteristics of apixaban were significantly changed when combined with these two antitumor drugs, where AUC(0-t), AUC(0-∞), t1/2, Tmax, and Cmax were increased, while CLz/F was significantly decreased. But both drugs did not appear to affect the metabolism of M2 in a significant way. Consistent results from in vitro and in vivo demonstrated that both adagrasib and asciminib inhibited the metabolism of apixaban. It provided reference data for the future clinical individualization of apixaban.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call