Abstract
The purpose of this study was to (i) investigate the effect of CYP3A4 variants on tofacitinib metabolism, and (ii) investigate the interaction of tofacitinib with resveratrol and its underlying mechanisms. The concentration of M9, the main metabolite of tofacitinib, was determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that the clearance rate of CYP3A4.18 variant was significantly decreased compared with CYP3A4.1, and the CYP3A4.28 variant was changed, but not statistically significant. In addition, the potential interaction of resveratrol with tofacitinib was determined based on rat liver microsomes (RLM), human liver microsomes (HLM), and CYP3A4 response systems. Resveratrol has an IC50 of 15.67 μM in RLM with a non-competitive mechanism. In HLM with a non-competitive mechanism, the IC50 value was 8.88 μM. The IC50 values were 6.41 μM, 10.60 μM and 27.08 μM in CYP3A4.1, .18 and .28, respectively, all with a competitive mechanism. In the in vivo study, Sprague-Dawley (SD) rats were randomized into two groups (n = 6) to receive tofacitinib with or without resveratrol. We found that the AUC(0-∞) of tofacitinib in the experimental group increased to around 207.5% compared with the control group. And Cmax increased to 260.0%. In summary, our data showed that resveratrol significantly affect the metabolism of tofacitinib, thus providing basic data for the precise clinical application of tofacitinib.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.