Abstract

Based on the ultrasonic C-scan results of 8YSZ coatings after thermal cycles, three-dimensional cylindrical numerical simulations of the physical geometry model of the thermal barrier coating (TBC) sinusoidal surfaces were conducted with finite elements to estimate the stress distribution and evolution law of the top coat (TC)/bond coat (BC) interface, including the centre and edge of the specimen affected by the dynamic growth of the thermally grown oxide (TGO). The results show that when a layer of TGO is grown on the TC/BC interface, compressive stress is uniformly distributed on the TGO interface, and the stress value decreases as a function of the TGO layer thickness. When the thickness of the TGO exceeds a certain value, the compressive stress of all parts of the interface gradually changes to tensile stress; meanwhile, the edges of the model affected by the crest and trough effects of the wave are reflected in the radial and circumferential directions, especially along the axial direction, with alternating concentrated tensile and compressive stresses. TGO growth imposes a minor influence on the magnitude and distributions of the radial and circumferential stresses at the BC interface. The linear elasticity, creep, fatigue, and stress accumulation effects of each layer of TBCs in each thermal cycle were fully considered in this model. The model not only interprets the crest and trough effects of the TC/BC surface interface during the growth of TGO, but also interprets the effects of the core and edge of the cylindrical model, further revealing the reason for which the core and edge of the TBC will most likely form cracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call