Abstract

The growth of thermally grown oxide (TGO) is a significant factor affecting the failure mechanism of thermal barrier coatings (TBCs) during cyclic high temperature service. In this work, a complicated finite element model with two semicircles reflecting the undulation of TGO interfaces was proposed, and four representative shapes of TGO interfaces were selected. There are mainly two methods to simulate TGO growth under high temperature, and each method was achieved by implementation of user subroutines in finite element method. A total of 100 thermal cycle loads were applied to the TBCs continuously. The stress evolution in the layers of Top Ceramic Coating (TC) and Bond Coating (BC) at the end of each thermal cycle load was obtained, the influence of TGO growth on stress evolution was analyzed, the differences between two methods of TGO growth were discussed. The results show that under TGO growth simulated by the first method, the stress distribution in the y direction does not change in both TC and BC layer, and the maximum stress decreases a lot in TC layer but nearly remains the same in BC. When the growth of TGO was simulated by the second method, stress evolution is complex and undergoes up to five stages with a small undulation or convex of TGO interfaces. Stress evolution in BC layer remains as the same as in the first method. Moreover, the maximum stress increases continually in BC layer. The comparison of these two simulation method would help to study the failure of TBCs caused by TGO growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.