Abstract

The effects of chronic oral ingestion of lead in doses ranging from 20–80 ppm were compared with those seen after the subacute exposure of rats to a 10 mg/kg daily dose of the heavy metal for 7 days. Irrespective of the treatment regimen used, lead treatment significantly increased the activities of renal pyruvate carboxylase, phosphoenopyruvate carboxykinase, fructose 1,6-diphosphatase and glucose 6-phosphatase. The observed enhancement of kidney gluconeogenic enzymes in chronically treated animal was associated with a stimulation of the adenylate cyclase-cyclic AMP system, a rise in blood glucose and urea as well as a depression in hepatic glycogen and serum immunoreactive insulin (IRI) levels. In contrast, subacute exposure to lead failed to significantly alter cyclic AMP metabolism and the concentrations of liver glycogen, blood glucose, serum urea or IRI. Whereas the insulinogenic index (the ratio of serum IRI to blood concentration) was markedly suppressed in chronically treated rats, this ratio remained within normal limits following subacute exposure to the heavy metal. However, a marked decrease in the insulinogenic index was observed in subacutely treated rats 15 min after the administration of a glucose load. The data provide evidence to show that increased glucose synthesis as well as suppressed pancreatic function may be responsible for lead-induced disturbances in glucose homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.