Abstract
Abstract The effects of a silicon-based structural defect on the hole transport properties of poly(methylphenylsilane) were studied by the DC time-of-flight technique. The defect was chemically introduced as silicon branching of the silicon backbone by copolymerizing methylphenyldichlorosilane and p-tolyltrichlorosilane with sodium. A good empirical relation was obtained between the hole drift mobility (μ E−0) at a zero electric field limit and the defect density. The value of μ E−0 decreased exponentially from 4 × 10−4 to 5 × 10−6cm2 V1 s−1 with an exponential increase in defect density from 0.0024 to 0.18. On the basis of Bassler's disorder formalism, hole transport in the polymers was quantitatively analysed, revealing the different contributions of diagonal and off-diagonal disorder with the defect density. The degree of fluctuation in the density of state mainly determined the hole drift mobility in specimens with fewer defects, while intersite hopping distance controlled the mobility in the polymers...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have