Abstract

The lignin present in lignocellulose seriously affects the efficiency of cellulose enzymatic hydrolysis. In addition, lignin adsorbs high-cost cellulase, causing greater economic losses. Lignin can also disturb the site of action of cellulase and reduce the efficiency of hydrolysis. Therefore, if lignin is removed or surface modified before cellulose enzymatic hydrolysis, the enzymatic hydrolysis efficiency of lignocellulosic biomass will be greatly improved. In this paper, the cellulose enzymatic properties of bamboo biomass being treated with dilute acid and alkaline under the intervention of biosurfactant rhamnolipid were evaluated. The effects of rhamnolipids on the adsorption characterization of cellulose on pretreated bamboo were studied. Besides, the inter-communication between rhamnolipids and cellulose was investigated by fluorescence probe. The results showed that rhamnolipids could have a positive effect on the enzymatic hydrolysis of bamboo biomass by reducing the non-productive adsorption of cellulase on the surface of lignocellulose. The outcome illustrated that cellulase could be combined with rhamnolipids micelles, participating in the formation of rhamnolipids micelles, thereby increasing the internal hydrophobicity of the micelles, but could not change the properties of rhamnolipids micelles higher than one CMC (Critical Micelle Concentration). It can be seen that the interaction between rhamnolipids and cellulase is beneficial to enhance the stability and enzymatic activity of cellulase, thereby improving the enzymatic hydrolysis efficiency of cellulose in biomass. Based on these results, a theoretical knowledge about the mechanism of enhancing the enzymatic hydrolysis efficiency of lignocellulose by biosurfactants rhamnolipids is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call