Abstract

BackgroundThe efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose. Although efforts have been made to explain the mechanism of enzymatic hydrolysis of cellulose by considering the interaction of cellulolytic enzymes with cellulose or the changes in the structure of cellulose during enzymatic hydrolysis, the process of cellulose hydrolysis is not yet fully understood. We have analysed the characteristics of the complex supramolecular structure of cellulose on the nanometre scale in terms of the spatial distribution of fibrils and fibril aggregates, the accessible surface area and the crystallinity during enzymatic hydrolysis. Influence of the porosity of the substrates and the hydrolysability was also investigated. All cellulosic substrates used in this study contained more than 96% cellulose.ResultsConversion yields of six cellulosic substrates were as follows, in descending order: nano-crystalline cellulose produced from never-dried soda pulp (NCC-OPHS-ND) > never-dried soda pulp (OPHS-ND) > dried soda pulp (OPHS-D) > Avicel > cotton treated with sodium hydroxide (cotton + NaOH) > cotton.ConclusionsNo significant correlations were observed between the yield of conversion and supramolecular characteristics, such as specific surface area (SSA) and lateral fibril dimensions (LFD). A strong correlation was found between the average pore size of the starting material and the enzymatic conversion yield. The degree of crystallinity was maintained during enzymatic hydrolysis of the cellulosic substrates, contradicting previous explanations of the increasing crystallinity of cellulose during enzymatic hydrolysis. Both acid and enzymatic hydrolysis can increase the LFD, but no plausible mechanisms could be identified. The sample with the highest initial degree of crystallinity, NCC-OPHS-ND, exhibited the highest conversion yield, but this was not accompanied by any change in LFD, indicating that the hydrolysis mechanism is not based on lateral erosion.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0236-9) contains supplementary material, which is available to authorized users.

Highlights

  • The efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose

  • CP/magic angle spinning (MAS) 13C-NMR measurements with spectral fitting [19,27,31,32] (Figure 2B) were done on the cellulosic substrates based on which the supramolecular structure of cellulose was represented in terms of the spatial distribution of fibrils and fibril aggregates, the accessible surface area, crystallinity and porosity

  • It serves to emphasize that for efficient enzymatic hydrolysis, the surface of cellulosic substrates need to be accessible to the enzymes, implying that the typical fibre wall pore sizes need to be larger than the typical sizes of the enzyme molecules which are around 10 nm [26]

Read more

Summary

Introduction

The efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose. The enzymatic hydrolysis of cellulose is generally considered to be a sustainable means of obtaining monosaccharides that can be converted into a number of products via microbial fermentation [1]. A new enzyme family, AA9 (formerly GH61), harbouring fungal enzymes and which functions in the same way as lytic polysaccharide monooxygenases has recently been introduced [6,7]. Filamentous fungi, such as the thoroughly investigated Trichoderma reesei, and certain bacteria secrete cellulases (non-complexed) extracellularly.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call