Abstract

Ordered Pt/SnO2 composite porous thin films were prepared for fabrication of planar mixed-potential hydrogen sensors. Characterization of the Pt/SnO2 films revealed that Pt elements were primarily loaded in Pt° form on the SnO2 film surface and did not significantly change the morphology of the film electrodes. The potentiometric response of Pt/SnO2 thin films to hydrogen varied with the Pt loading contents. Compared to the pristine SnO2 film, the 1 at% and 2 at% Pt-loaded SnO2 composite films exhibited 1.6 and 2.0 times higher potentiometric response to 300 ppm hydrogen at 500 °C, with a similar response time of 6–10.5 s. By assembling an array of sensors composed of SnO2 films loaded with 1 at% and 2 at% Pt, and using principal component analysis, discrimination of hydrogen and four interfering gases (ammonia, carbon monoxide, nitrogen dioxide, and propane) in the concentration range of 100–300 ppm was achieved. The sensing behaviors of the Pt/SnO2 composite thin films were discussed in relation to the competitive promotion effects for the heterogeneous and electrochemical catalytic activities by Pt loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call