Abstract

The aim of this study was to investigate the effects of intestinal microbial manipulation by dietary probiotic supplementation on digestive enzyme activity, immune-related gene transcription, intestinal structure alteration, and viability against pathogenic challenge in olive flounder. Similar-sized flounders (14.92 ± 0.21 g) were divided into three groups and supplemented with a control (without probiotic) or 1 × 108 CFU/g diet of each of Bacillus sp. SJ-10 (ProB) and Lactobacillus plantarum (ProL) for eight weeks. At the end of the feeding trial, the estimated intestinal microbial richness (Chao1) and diversity (Shannon) demonstrated a significant (P < 0.05) abundance in the ProB group (484.80 ± 88.75, 5.08 ± 0.17) compared to the ProL (285.32 ± 17.78, 4.54 ± 0.09) and control groups (263.23 ± 20.20, 4.30 ± 0.20). A similar alteration phenomenon was also found at the phylum level, with a higher abundance of Proteobacteria, Actinobacteria, and Acidobacteria. Trypsin and lipase activities were elevated in both the ProB and ProL groups compared to the control, but amylase was only higher in the ProB group. The expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were significantly higher in the ProB group than in the other two groups. There was a significant increase in transcription of IL-10 in both the ProB and ProL groups compared to the control. The length of villi and microvilli of probiotic-fed olive flounder was increased but was not significantly different from the control group. In an in vivo challenge experiment with Streptococcus iniae (1 × 108 CFU/mL), the survival rates of the ProB and ProL groups were 29.17% and 12.50%, respectively, when control mortality reached 100%. Therefore, intestinal microbiota manipulation by probiotic supplementation increased the richness of the bacterial population, digestive enzyme activity, intestinal immune gene transcription, and infectious disease protection in olive flounder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call