Abstract
This study was conducted to investigate the effects of alfalfa meal diets on the intestinal microbial diversity and immunity of growing egg-type ducks. A total of 128 healthy 7-week-old female egg-type Shaoxing ducks were selected and randomly assigned into four dietary treatments: 0%, 3%, 6% and 9% alfalfa meal for 8 weeks. Each treatment consisted of four replicates of eight ducks each. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was used to characterize the microbiota. The results showed that the DGGE fingerprints of the V6-V8 fragments of the 16S rRNA from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal had significantly higher microbiota species richness than those fed 0% alfalfa meal (p < 0.05). The Shannon-Weiner index of the microbiota from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal was significantly higher than those fed 0% alfalfa meal (p < 0.05). Molecular analysis of the caecal and faecal DNA extracts showed that the alfalfa meal diet promotes the intestinal microbial diversity, as indicated by their higher species richness and Shannon-Weiner index. However, the groups did not significantly differ in terms of average daily gain, feed intake and gain-to-feed ratio (p > 0.05), and the 3-9% alfalfa meal did not affect the growth performance of the growing egg-type ducks. The proliferation of T and B lymphocytes was significantly greater (p < 0.05) in the groups supplemented with 3%, 6% and 9% of alfalfa meal than the unsupplemented control group, and alfalfa meal promoted the lymphocytes proliferation of the growing egg-type ducks. Dietary alfalfa meal supplementation increases intestinal microbial community diversity and improves of the immune response growing egg-type ducks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.