Abstract

Abstract Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call