Abstract

This paper describes the low-cost, scalable fabrication of 2D metasurface LWIR broadband polarized emitter/absorber. A Frequency Selective Surface (FSS) type design consisting of dipole antenna elements is designed for resonance in the 7.5-13 μm band. Frequency-domain Finite Element Method (FEM) is used to optimize the design with ellipsometrically measured properties. The design is synthesized to be broadband by creating a multiple cavities and by hybridizing the dipole modes with phonon resonances in a germanium/silica dielectric which separates metallic elements from a continuous ground plane. While IR metasurfaces can be readily realized using direct-write nanofabrication techniques such as E-Beam Lithography, or Focus-Ion Beam milling, or two-photon lithography, these technologies are cost-prohibitive for large areas. This paper explores the Microsphere Photolithography (MPL) technique to fabricate these devices. MPL uses arrays of self-assembled microspheres as optical elements, with each sphere focusing flood illumination to a sub-wavelength photonic jet in the photoresist. Because the illumination can be controlled over larger scales (several μm resolutions) using a conventional mask, the technique facilitates very low cost hierarchical patterning with sub-400 nm feature sizes. The paper demonstrates the fabrication of metasurfaces over 15 cm2 and are measured using FTIR and imaged with a thermal camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.