Abstract

Bisphenol A (BPA), known as an environmental endocrine disrupter, is widely used in industry and dentistry. We investigated the effects of fetal and neonatal exposure to bisphenol A (BPA) on the brain development of mice. The density of tyrosine hydroxylase (TH)-immunoreactive (IR) neurons in substantia nigra was significantly decreased in BPA-exposed female mice (3 μg/g powder food), but not in the male mice, as compared with that of the control mice. The densities of calbindin D-28 K-, calretinin- and parvalbumin-IR neurons in the cerebral cortex were not different between BPA-exposed and the control mice. The present study indicates that chronic exposure of BPA during prenatal and neonatal periods causes a decrease of TH-positive neurons in substantia nigra only in female mice brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.