Abstract

Partial lesions of the nigrostriatal dopamine system have been investigated with respect to their ability to induce consistent long-lasting deficits in movement initiation and skilled forelimb use. In eight different lesion groups 6-hydroxydopamine (6-OHDA) was injected at one, two, three, or four sites into the lateral sector of the right striatum, in a total dose of 20–30 μg. Impairments in movement initiation in a forelimb stepping test, and in skilled paw use in a paw-reaching test, was seen only in animals where the severity of the lesion exceeded a critical threshold, which was different for the different tests used: single (1×20 μg) or two-site (2×10 μg) injections into the striatum had only small affects on forelimb stepping, no effect on skilled paw use. More pronounced deficits were obtained in animals where the same total dose of 6-OHDA was distributed over three or four sites along the rostro-caudal extent of the lateral striatum or where the injections were made close to the junction of the globus pallidus. The results show that a 60–70% reduction in tyrosine hydroxylase (TH)-positive fiber density in the lateral striatum, accompanied by a 50–60% reduction in TH-positive cells in substantia nigra (SN), is sufficient for the induction of significant impairment in initiation of stepping. Impaired skilled paw-use, on the other hand, was obtained only with a four-site (4×7 μg) lesion, which induced 80–95% reduction in TH fiber density throughout the rostrocaudal extent of the lateral striatum and a 75% loss of TH-positive neurons in SN. Drug-induced rotation, by contrast, was observed also in animals with more restricted presymptomatic lesions. The results indicate that the four-site intrastriatal 6-OHDA lesion may be a relevant model of the neuropathology seen in parkinsonian patients in a manifest symptomatic stage of the disease and may be particularly useful experimentally since it leaves a significant portion of the nigrostriatal projection intact which can serve as a substrate for regeneration and functional recovery in response to growth promoting and neuroprotective agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.