Abstract

AlGaN/GaN heterostructure field-effect transistors (HFETs) with different floating gate lengths and floating gates annealed at different temperatures, are fabricated. Using the measured capacitance–voltage curves of the gate Shottky contacts for the AlGaN/GaN HFETs, we find that after floating gate experiences 600 °C rapid thermal annealing, the larger the floating gate length, the larger the two-dimensional electron gas electron density under the gate region is. Based on the measured capacitance–voltage and current–voltage curves, the strain of the AlGaN barrier layer in the gate region is calculated, which proves that the increased electron density originates from the increased strain of the AlGaN barrier layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.