Abstract
Based on the measured capacitance—voltage (C—V) curves and current—voltage (I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors (HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional (quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas (2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field (PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm2/(V·s) (sample a), 1307.4 cm2/(V·s) (sample b), 1561.7 cm2/(V·s) (sample c) and 678.1 cm2/(V·s) (sample d), respectively. When the 2DEG sheet density is modulated by the drain—source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the 2DEG sheet density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.