Abstract

AbstractThe effects of periodic velocity fluctuations on magnetic resonance flow images are investigated experimentally and theoretically. In the experiments, laminar pipe flow of water was examined. The flow was driven by a constant pressure head with a superimposed sinusoidal component with the frequency ωz varied from 0 to 1 Hz, whereas in the simulations ωz was between 0 to 65 Hz. The velocity profiles obtained from the experimental results compare well with the theoretical calculations. Both theory and experiment show that flow fluctuations produce artifacts in the form of “ghosts” of the primary image, which are spaced at equal intervals in the phase encoding (flow) direction. The distance between ghosts depends on the fluctuation frequency and on the experimentally specified parameters (phase encoding gradient step, repetition time, phase encoding duration, and time difference between phase encoding gradient lobes). The amplitudes of the ghosts depend on amplitude of the flow fluctuation and diminish at frequencies higher than 30 Hz. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1662–1671, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.